import numpy as np
X = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
n_components, n_samples, n_features, = (2,) + X.shape
W = np.random.uniform(size = (n_samples, n_components))
H = np.random.uniform(size = (n_components, n_features))
eps = 1e-4
# NMF
for i in range(100):
# update B
A = X.T.dot(W)
B = W.T.dot(W)
for j in range(n_components):
tmp = H[j, :] + A[:, j] - H.T.dot(B[:, j])
H[j, :] = np.maximum(tmp, eps)
# update A
C = X.dot(H.T)
D = H.dot(H.T)
for j in range(n_components):
tmp = W[:, j] * D[j, j] + C[:, j] - W.dot(D[:, j])
W[:, j] = np.maximum(tmp, eps)
norm = np.linalg.norm(W[:, j])
if norm > 0:
W[:, j] /= norm
print(W)
print(H)
print(W.dot(H))